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ABSTRACT

We shall give a mathematical theorem by which one can determine in an essentially unique
way a complex function of a real argument from its absolute value and the absolute values
of the Fourier transform of the truncated function for all possible truncations.

The absolute values of the function and of the Fourier transforms have a physical signifi-
cance in electromagnetic and quantum theory. The theorem we present enables one to as-
sign electric fields to energy densities and quantum mechanical states to sets of proba-
bility densities.

The measurements required for use in quantum mechanics can be expressed as the mean
values of certain operators constructed from the position ana momentum operators. These
will be given also.
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I
A FOURIER THEOREM AND ITS APPLICATION TO THE MEASUREMENT

OF ELECTROMAGNETIC FIELDS AND QUANTUM MECHANICAL STATES

I. INTRODUCTION

In problems of wave propagation or quantum mechanics in one dimension, one has a
differential equation for a function f(x, t) which is found under certain initial conditions. The

function f(x, t), which is generally complex, is called the wave function. For example, in the

propagation of electromagnetic radiation along the x-axis, f(x, t) could be chosen to be a com-

ponent of the electric vector, or in quantum mechanics it could be taken as the wave function

that gives the state of a one-dimensional system.

Since we shall consider one time only, we shall drop the time variables.

Although the differential equations determine i(x1 , the measurable quantities are I f(x) 12.

In the case of electromagnetic wave propagation, for example, this quantity gives the energy

density of the radiation, while in quantum mechanics it gives the relative probability density of

finding a particle on the x-axis.
Let us define the Fourier transform F(x) of f(x) by

-x) •+.F (y) eiXYdy

f(x) (1-)

F(x) = . f(Y)e'iXYdy()

The quantity I F(x) 12 is also an energy density or probability density, In the electromag-

netic case I F(x) 12 gives the energy density in frequency space, while in quantum mechanics the

quantity gives the probability density in momentum space.

It might seem that if one knew the energy density in frequency space as well as the energy

density in x-space (in the electromagnetic case) or the probability densities in both coordinate

and momentum space (in the quantum mechanical case), the wave function would be essentially

unique. One has the feeling that all information which the wave function can provide has been

used. However, a counterexample shows that the densities in the two spaces are not sufficient
to characterize the wave function uniquely!

t This counterexarriple is the work of Mr. J. S. Sheehan of the MITRE Corporation. The authors are grateful to
Dr. R. T. Promer of Lincoln Laboratory for bringing it to their attention.
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Let

fI(x) = 70 (x) + iv 2 (x)

fx(x) = Vo(X) -i n(X) l()

where the functions 7n are the Hermite functions

q9n(x) = expi- -T HnW(X)

Hn(x) being the Hermite polynomial of order n. Denoting the Fourier transforms of ft and f.

by Ft and F 2 , respectively, we have

FI(x) = 'o(x) -iq, 2 (x)

F 2 (x) = 9o(x) + i9 2 (x) (3)

Although I F,(x) I = I F2(x) I and I fi(x) I = I f2 (x) 1, fl(x) and f2 (x) are linearly independent.

Hence, the information with which we are provided is, in general, insufficient to determine

the function uniquely. More information is needed. This information might be provided in sev-

eral forms. In Refs. I and 2, for example, one restricts f(x) to the class of functions that vanish

identically for values of x which are sufficiently small. The additional information would then

be provided by the position of the zeros in the complex plane of the Fourier transform F(x). How-

ever, we should like to restrict the additional information required to that which could be obtained

from energy density or probability density measurements. In principle, these measurements can

be obtained through the use of idealized existing apparatus.

fl. THE PRINCIPAL THEOREM

It will be convenient to use the notion of truncated functions, i.e., functions that vanish

identically when x is in an interval. Accordingly, we shall introduce the step function , (x):

17(x) I x > 0

=0 x< 0 (4)

Then

71 (x -a) f(x) = f(x) x x>a

= 0 x< a (5a)

and

n(x -a) F(x) =F(x) x x>a

= 0 x< a (5b)
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Let Fa(x) be the Fourier transform of 71(x - a) f(x):

Fa(x) +00 71(y - a) f(y) eixy dy = 1--r f(y) eixy dy (6)I ~aa

Furthermore, let us define fa(x) as the Fourier transform of n(x - a) F(x):Wa
fa(x) t1(y - a) F(y) e='- dy =.- F(y) e_'xY dy (7)

Then our principal theorem is the following.

Theorem A.
2

Let fl(x) and f2 (x) be complex functions of the real variable -0 < x <0, which are L inte-

grable in the Lebesgue sense. Let Fia(X) and F.a(x) be the Fourier transforms of i(x - a) fI(x)

and i(x - a) f2 (x), respectively. There exists a complex number w of modulus unity such that

fl(x) = wf2 (x) (8)

almost everywhere if and only if almost everywhere

If1 (x)I = 1f2 (x)I , (9)

1 Fla(x) I = I F 2 a(x) I for all a (10)

There is a theorem complementary to this one that is obtained by using F(x) and fa(x).

Theorem B.

Let FI(x) and F 2 (x) be the Fourier transforms of fI(x) and f2 (x), respectively [Eq. (1)]

Let fla(x) and fZa(x) be the Fourier transforms of i(x - a) Fp(x) and &(x - a) F 2 (x), respectively

[Eq. (7)] . Then there exists a complex number w of modulus unity such that

f (x) = wf 2 (x) (11)

if and only if almost everywhere

IFI(x)l = IFz(x) 1 (12)

Ifa f(x) I , for all a (13)

We shall prove Theorem A. Theorem B is proved analogously.

The necessary condition is obvious. Hence, we shall prove only the sufficiency. From

Eq. (10)

F* (x) •ipx Fa(x) dx = (x) eipx Fa(x) dx , for all real a and P (14)
is i0
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From Parseval's theorem, Eq. (11) lcads to

f (x) fY(x + 0) dx = f2(x) f2 (x + P) dx . (t5)

or

ft(x) ft(x + P) dx = f2 (x) f2 (x + P) dx (16)

where Eq. (16) holds for all real a, b and P (Theorem 64, Ref. 3).

From the lemma on page 360 of Ref. 4 it follows that

f;(x) fI(x + P) = f 2 (x + 0) (17)

almost everywhere. Let us write fl and f2 in polar form:

| i~4 (x)
f4 (x) = A(x) e

f2 (x) = A(x) e 2 (18)

where 1fj(x)I = If2 (x)I = A(x) and where q01 (x) and 0 2 (x) are real.

Then for values of x and y such that fl(x) W 0 and fp(y) = 0,

i[(, 4 (x)-q,4 (Y)] i[(q2 (x)-q, 2 (y)(Se = e(49)

almost everywhere.

Now, from Eq. (18)

fW(x) = e f2 (x) 1 (20)

After defining w(x) by

w(x) = e 4(x)-(P2(x)J

we have from Eq. (19)

W(x) = W(y) (21)

almost everywhere for x and y such that f,(x) # 0 and fl(y) #0, from which the theorem follows.

HI. APPLICATION OF THE THEOREMS

We can now say how the theorems can be used to assign wave functions to probability or

energy densities.

First, consider Theorem A. In the electromagnetic case If(x) 12 gives the energy density

in position space. The quantity I Fa(X) 12 gives the energy density in frequency space if a shutter
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haw been inserted at x - a in position space so that that portion of the wave for x < a does not

contribute to the energy density in frequency space. Then if f(x) is real, as it is usually taken

to be in the electromagnetic case, it is determined within a sign by the energy measurements

in position space and by those in frequency space for all positions of the shutter.

In the case of quantum mechanics, f(x) 1 2 gives the probability density in coordinate space,

"while I Fa(x) 12 gives a priori probability density in momentum space if a particle had been found
in the interval a < x < .o, the state before any measurement being given by f(x). Thus, these

probability densities determine f(x) within a factor w. But since Wf(x) corresponds to the same

state as f(x), these densities are in a one-to-one correspondence with states of a quantum
mechanical system.

Theorem B makes use of complementary information. The energy density in frequency

space is given by IF(x) 12, while Ifa(x) 2 is the density in position space if a filter is used to

cut out frequencies less than a. Again, such densities for all a determine the electric field

f(x) within a sign. Similarly, in the quantum mechanical case I F(x) I2 is the probability density

in momentum space. The quantity, I fa(x) 12 is the density in coordinate space if it is ascertained

that particles with momentum less than a have been filtered out. Such probability density meas-

urements for all a correspond in a unique way to states.

IV. A QUANTUM MECHANICAL INTERPRETATION OF THE THEOREM

We shall give briefly a quantum mechanical interpretation of the theorem. Let us consider

a quantum mechanical system in which two hypermaximal operators X and P form an irreducible

set such that

XP - PX = i1 (22)

where I is the identity operator. The coordinate operator is taken to be X, and P is the mo-

memtum operator. It is well known from the work of von Neumann and others that to every

vector f in an abstract Hilbert space we can assign a pair of functions f(x) and F(x), which are

Fourier transforms of each other (Eq. (1)] so that

0- f(x) - F(x) (23)

implies

e -- f(x+ ) ----elPx F(x) , (24)

i(X -- a) # " t - a) f(x) F , (25)

i)(P - a) #- fa(x) (x - a) F(x) (26)

where F and fa are defined by Eqs. (6) and (7).

It will be convenient to introduce the following definition. Two vectors (*01 2 of a Hilbert

space are said to belong to the same ray if a nonzero scaler w exists such that

W4 2 (27)



The content of the theorem can now be stated in terms of expectation values of certain
operators. As usual, we define the expectation value of an operator U when a dynamical sYs-
tern is in a state given by the ray wo where 1 in a vector in the ray:

=(I, M44)/(*,) ,

using the physicist's convention in the ordering of the inner product.
The theorem then says that the states of a one-dimensional system are in a one-to-one

correspondence with the set of real numbers.

i (X'- a) and ij(X - b) ij(P - a) ,j(x - b) for all real a and b

An alternative formuaon sa that the states are in a one-to-one correspondence with the
set of complex numbers e l {(X) e •'• for all real a and A.
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